viernes, 27 de marzo de 2009

tercer trabajo de investigacion


EQUIPO MEDIDOR DE DISTANCIA (DME)


El equipo medidor de distancia (DME) es un sistema de impulsos de radar secundario que funciona en la banda de 978-1213 MHz, el cual proporciona una indicación continúa y exacta, en la cabina, de la distancia existente entre un avión y el transmisor terrestre (Millas Náuticas), el sistema básico de radar de abordo consta de: un Interrogador (Receptor y Transmisor combinados), un Indicador y una Antena Omnidireccional, capaz de recibir señales polarizadas verticalmente. La distancia es medida y determinada por el interrogador. Cuando una frecuencia de VOR es seleccionada, la frecuencia DME es seleccionada automáticamente.

Empleos del DME:

Proporciona una línea de posición circular cuando se usa un solo DME. Se obtienen posiciones si se emplea junto con el VOR.

Su indicación de distancia es muy útil cuando se realiza aproximación con instrumentos.

Facilita la tarea del ATC en la identificación de radar cuando un avión informa de su posición en función de distancia y dirección desde una estación VOR/DME.

Cuando dos aviones usan DME y vuelan en la misma vía, las distancias positivas de ambos permiten al ATC mantener una separación segura.

Las distancias precisas para el descenso se tienen cuando un Transpondedor funciona junto con ILS.

Proporciona la base para mejores patrones de acercamiento.Con un computador adicional puede llevarse a cabo la navegación por zonas con gran exactitud.

Bibliografia: Manual Básico de Sistemas de Navegación, ATA 34-45-00, Pagina 226.

BUSCADOR DE DIRECCION AUTOMATICO (ADF)


El sistema ADF es el nombre que recibe el radiogoniómetro en el avión y sus componentes principales son:

-1antena de cuadro, fija o giratoria
-1 antena de orientación omnidireccional capacitiva
-Unidades acopladoras de antena para evitar errores
-Receptor
-Panel de control y sintonización
-Conexión con ICS y conmutador o interruptor para los indicadores.

Actualmente los ADF trabajan con antenas de cuadro fijas, posicionadas entre sí en forma perpendicular alineadas con los ejes longitudinal y transversal respectivamente, el voltaje inducido en las diferentes bobinas dependerá de igual forma a la dirección de incidencia de la onda, el voltaje inducido en las bobinas pasara a través de unos conductores a las bobinas del estator de un goniómetro, creando aquí un campo electromagnético con las mismas características y dirección del campo de la onda de radio, el rotor o bonina de búsqueda del goniómetro es el elemento conectado al receptor (a través de sus devanados acopladores).

La antena de búsqueda se hace girar a través de un servo-motor el cual se detiene solo cuando detecta un cero en la salida de la antena de búsqueda previamente conmutada con la antena de orientación para deshacer la ambigüedad de los 180°, este servo motor mueve a su vez un sistema sincrónico responsable de mover y posicionar el puntero del indicador dando la ubicación de la estación NDB.

El receptor es superheterodino y llegan a este las señales conmutadas de la antena de cuadro y orientación trabajando en una gama de frecuencia de 100-200Khz y una IF de 144Hz.

El indicador puede ser un RMI (Radio Magnetic Indicator) en el cual se tiene una indicación de rumbo magnético (el dial se mueve en la misma forma que lo hace la brújula gracias a un sincrónico) y el puntero se mueve al compás de la antena (rotor de búsqueda) dando la ubicación del NDB.

La indicación también se puede ver en el RBI (Indicador de Rumbo Relativo) en el cual el dial es fijo o se mueve con una perilla manual y la indicación se da en relación al eje longitudinal del avión.

Bibliografia: Manual Básico de Sistemas de Navegación, ATA 34-37-00, Paginas 111, 112, 114, 115.

SISTEMA DE POSICIONAMIENTO GLOBAL (GPS)


La idea que hay detrás del sistema GPS es la de utilizar satélites en el espacio como puntos de referencia para localizaciones terrestres. Mediante la medición muy precisa de las distancias a tres de estos satélites, lo cual se realiza a partir de las medidas de los retardos que han sufrido las señales provenientes de estos satélites, se puede calcular por triangulación la posición en cualquier lugar de la Tierra.

No obstante, existen una serie de factores que afectan a la medida de la distancia: errores en el reloj del satélite, desfase en el reloj del receptor o retardo introducido por la propagación Ionosférica. Por estas razones, las distancias calculadas por el receptor GPS incluyen un término de error constante, denominándose pseudodistancias, y se hace necesaria la obtención de una cuarta medida para determinar su posición exacta.

El sistema GPS fue concebido inicialmente como un proyecto militar que permitiese a soldados y vehículos conocer su posición exacta, por lo que las autoridades estadounidenses decidieron que el sistema estuviera disponible para usos civiles bajo ciertas restricciones. En especial, se introdujo intencionadamente una señal que alterara la precisión con la que los receptores calculan su posición. Este factor de error se conoce con el nombre de disponibilidad selectiva, es aleatoria y varía constantemente, normalmente cuando existe algún conflicto en que se ve involucrado el ejército de los EE.UU.

Este hecho da lugar a la existencia de dos tipos de servicios: Estándar (SPS) y Preciso (PPS). El servicio de posicionamiento estándar permite una precisión horizontal de 100 m y vertical de 156 m, así como una precisión temporal de 340ns. Por el contrario, el servicio preciso está reservado para usuarios autorizados y permite precisiones de 22 m horizontalmente, 27,7 m en vertical, y una precisión temporal de 100ns.

GPS DIFERENCIAL:

Las técnicas de GPS diferencial (DGPS) se utilizan para eliminar los errores introducidos por la disponibilidad selectiva y otras fuentes de error. El DGPS supone la cooperación de dos receptores, uno que es fijo (estación base) y otro que se desplaza alrededor realizando medidas de posición. El receptor fijo es la clave y se encarga de relacionar todas las medidas del satélite con una referencia fija. De este modo, la estación base calcula las correcciones necesarias para que las pseudodistancias coincidan con su posición correcta que es perfectamente conocida. Las correcciones pueden utilizarse en equipos convencionales que operen en un área próxima (unas decenas de kilómetros), y pueden obtenerse precisiones de hasta un par de metros en aplicaciones móviles o incluso mejores en situaciones estacionarias.

Afortunadamente, la gran escala de los sistemas GPS nos ayuda. Los satélites se encuentran tan alejados en el espacio que las pequeñas distancias que viajamos aquí en la Tierra son insignificantes. Por ello, si dos receptores se encuentran muy juntos el uno del otro (unos pocos cientos de kilómetros), la señal que alcanza a ambos habrá recorrido prácticamente el mismo pasillo a través de la atmósfera y sufrirá los mismos errores.

La idea que hay detrás del DGPS consiste en que disponemos de un receptor que mide los errores de temporización y proporciona la información de corrección a los otros receptores que se están moviendo a su alrededor. En los primeros días del GPS, las estaciones de referencia eran establecidas por compañías privadas que tenían grandes proyectos que demandaban una alta precisión. Cualquiera de la zona puede recibir estas correcciones y mejorar considerablemente la precisión de las medidas de su receptor GPS.

Bibliografia: Manual Básico de Sistemas de Navegación, ATA 34-59-00, Paginas 257-260, 268-270.

SISTEMA DE NAVEGACION INERCIAL (INS)


El INS, es un concepto avanzado de la navegación diseñado como parte integral de los sistemas de aviónica. Este sistema le asistirá no sólo en el Curso de la navegación, sino también proporcionará comandos de manejo al piloto automático para dirigir el aeroplano con los puntos de ruta predeterminados a su destino, además de comandos de manejo, la unidad de navegación del INS contiene un GIROCOMPÁS GYMBAL montado que detecta cambios en la actitud del aeroplano en sus ejes de Pitch (Inclinación Longitudinal), Roll (Rotación Horizontal) y Yaw (Guiñada o Cabeceo), para mantener estabilizado el aeroplano y de igual forma el azimut del radar meteorológico; además estas señales también llegan a los instrumentos que muestran la actitud de vuelo de la aeronave. Los acelerómetros, montados, detectan todas las aceleraciones verticales y horizontales (cambios de velocidad).

CARACTERÍSTICAS:

1. Alineación y calibración automática son efectuadas cada vez que el INS es encendido.
2. El INS no requiere ninguna entrada auxiliar de navegación externa al avión.
3. El INS continuamente monitorea su propio funcionamiento y suministra indicaciones de alerta y/o señales de indicación de alerta cuando las señales de salida y los datos mostrados son erróneos.
4. Inserción de posición actual, puntos de ruta, y datos de destino son fácilmente insertados usando un teclado. Cada INS puede ser usado separadamente para insertar datos de puntos de ruta latitud y longitud.
5. Las características del INS pueden ser mejoradas durante el vuelo haciendo un arreglo de la posición cuando un punto de referencia exacto esté disponible.



Bibliografia: Manual Básico de Sistemas de Navegación, ATA 34-70-00, Paginas 303, 304, 309.


Cockpit Voice Recorders

Recordadora de voces de la cabina del piloto: a menudo lo conocemos como CVRs, son equipos requeridos en todas las operaciones de aeronaves comerciales atraves de todo el mundo. Estos dispositivos recuerda las conversaciones que hay atraves de toda la cabina del piloto ( en modelos mas viejos) cinta digital y (en modelos mas modernos) tienen un microchip . estos sonidos son recojidos por via de unos micrófonos del sistema de la cabina del piloto, conocida como area de micrófonos de la cabina del pioto(CAM), direccion de micrófonos publicos (PA), radio micrófonos(RDO) en los eventos de un accidente , esta información puede ser usada por investigadores para determinar que fue lo que ocurrio en la canina de el piloto atraves del incidente.


-Principios de funcionamiento
Este es un dispositivo importante para determinar la causa del accidente de una aeronave. Una cinta sin fin permite una grabación de los últimos 30 minutos del vuelo.

-Componentes del sistema

Existen cuatro entradas de audio que llegan hacia el grabador de voz, son los micrófonos del piloto, micrófonos del oficial, micrófonos del ingeniero de vuelo, y un micrófono que recibe audio y conversaciones en la cabina de pilotos. Estos micrófonos siempre están encendidos y no requieren ningún tipo de activación.

especificaciones

Grabador de voz de cabina del piloto :
1.Tiempo de 30 minutos grabado continuo, 2 horas para las unidades de estado sólido digital
2.Número de Canales 4
3.Impacto tolerancia 3400Gs / 6,5 ms
4.Resistencia al fuego 1100 degC / 30 min
5.Resistencia a la presión del agua sumergidas 20.000 pies
Submarina baliza 37,5 KHz; batería tiene vida útil de 6 años o más, con 30 días de operación a la capacidad de activación

TRANSMISOR LOCALIZADOR DE EMERGENCIA (ELT)



-Principios de funcionamiento

Un ELT es un radio pequeño, que se encuentra ubicado en un lugar donde es muy posible que sea afectado en un accidente. Este tiene un interruptor de inercia, el cual se activa cuando se produce un accidente y empieza a transmitir una serie de tonos simultáneamente en dos frecuencias de emergencia, 121.5 Mhz en la banda VHF y 243.0 MHz en la banda UHF. La batería interna del ELT fue diseñada para mantenerlo funcionando continuamente por 48 horas.

Los ELTS están instalados lo mas próximos a el frente del avión que se puede, y están conectados a una antena flexible. La instalación debe ser tal, que el interruptor de inercia debe quedar orientado para que tenga una fuerza sensitiva de aproximadamente 5 G en el eje longitudinal del avión.

-Componentes del sistema

-Operación del sistema

Un ELT puede ser probado, removiéndolo de la aeronave y llevándolo a una habitación protegida para prevenir que la transmisión cause una falsa alerta. Se puede hacer una prueba operacional en el avión si se remueve la antena y se le adiciona una carga inductiva en lugar de esta. EL piloto debe asegurarse al terminar cada vuelo que el ELT no fue activado, para esto selecciona el receptor de VHF en 121.5 Mhz y si no escucha ningún tono indica que el ELT no esta operando.
SISTEMA DE COMUNICACIÓN EN VHF

-Principios de funcionamiento

Los transmisores de comunicación de VHF proveen transmisión de comunicación de voz entre aeronaves y estaciones de tierra o entre aeronaves. La transmisión esta en un mismo numero de canales y frecuencias como la proveída en el receptor. La distancia promedio de comunicación desde una aeronave a tierra es aproximadamente 30 millas cuando la aeronave esta volando a 1000 pies y aproximadamente 135 millas cuando la aeronave esta a 10000 pies. La frecuencia de transmisión esta determinada por la posición del switche selector

Las radiocomunicaciones en VHF están disponibles con 720 a 360 canales. Algunos viejos radios de VHF contienen solo 90 canales y son silenciosos en operación. Los 720 canales de radio son preferidos por más pilotos debido a su versatilidad en selección de frecuencias.

-Componentes del sistema

Una única instalación de VHF consta de 3 partes que son: el transceptor (tiene un receptor superheterodino de canal simple y un transmisor de amplitud modulada), panel de control de VHF y conexiones al interfon o ICS, para proveerlos de micrófonos y audífono. En aviones ligeros es común ver el transceptor integrado bajo el mismo panel de control de VHF, actualmente se pueden encontrar paneles que integran comunicación (COM), navegación (NAV) y radionavegación (RNAV).

-Operación del sistema

Los equipos de VHF constan de: Perillas para sintonizar determinada frecuencia, se puede encontrar en forma de dos perillas concéntricas en las cuales el exterior domina las unidades y decenas y el interno decenas y centenas. Algunos equipos tienen para sintonizar dos frecuencias, quedando una en Stand-by y la otra de uso, uno puede cambiar de la frecuencia de uso a la de Stand-by usando un interruptor de transferencia.

El control de sintonización también puede ser sencillo, cuando se gira a la derecha disminuye la frecuencia y hacia la izquierda se aumenta.

-El panel de control también puede tener un control de volumen previo a la caja de AIS.
-Control de ruido de fondo, desconecta la salida del receptor cuando no se esta recibiendo señales, el piloto escoge a que nivel se debe abrir la salida del audio receptor.

-Control de selección de modo, se puede seleccionar AM normal o AM de largo alcance (STACOM) si la antena STACOM tiene lóbulos conmutables se puede incorporar el interruptor de conmutación.

-Interruptor on/Of., abre o cierra el relé de potencia del transceptor puede estar integrado en el control de volumen.-Mando de selectividad del receptor, puede ser de selectividad normal o aguda (STACOM).
SISTEMA DE COMUNICACIÓN EN HF

-Principios de funcionamiento

Los sistemas HF proveen comunicaciones de largo alcance.El sistema HF en una aeronave se usa para proveer comunicación de voz en dos sentidos, con estaciones de tierra, o con otra aeronave. La comunicación HF suministra un camino confiable para transmitir y recibir información en vuelo, instrucciones de aterrizaje, y comunicación de voz. Una aeronave comercial puede llevar varios transceptores para diversas funciones.

-Componentes del sistema

Una instalación común de un sistema HF consta de un transceptor, una unidad de sintonía de antena automática (ATU), panel de control del equipo HF y antena.

-Operación del sistema

Interruptor selector de modo. AM – SSB – OFF El interruptor de apagado puede ser otro interruptor designado, o también no usado en lo absoluto empleándose directamente el interruptor de equipo de radio general. A pesar que en comunicación HF en la aviación solo debe hacerse a través de la banda lateral superior única SSB, algunos equipos tienen también para escoger USB y LSB, el modo de AM también se puede encontrar como AME. Selectores de frecuencia Típicamente son 4 controles que proporcionan una selección en un rango de 2,8 MHZ – 24 MHZ en pasos de 1 KHZ (ARINC 559A).
SISTEMA DE GRABACION DE VOZ

-Principios de funcionamiento

Este es un dispositivo importante para determinar la causa del accidente de una aeronave. Una cinta sin fin permite una grabación de los últimos 30 minutos del vuelo.



-Componentes del sistema

Existen cuatro entradas de audio que llegan hacia el grabador de voz, son los micrófonos del piloto, micrófonos del oficial, micrófonos del ingeniero de vuelo, y un micrófono que recibe audio y conversaciones en la cabina de pilotos. Estos micrófonos siempre están encendidos y no requieren ningún tipo de activación.
SISTEMA DE LLAMADO A TIERRA

-Principios de funcionamiento
-Arquitectura
SISTEMA DE ENTRETENIMIENTO A PASAJEROS

El propósito de este sistema es proveer a los pasajeros canales variados de música y en algunos casos videos, este quizás es el sistema que más ofrece problemas por que esta bajo la continua manipulación de los pasajeros y es común que se desajusten los sistemas o perillas selectoras, dando lugar a chispas las cuales pueden ocasionar incendios.

-Principios de funcionamiento

Todo sistema de entretenimiento va interconectado con el sistema PA, el panel del sistema de entretenimiento se encuentra ubicado en el compartimiento de auxiliares de vuelo, las cuales escogen el canal y el volumen. Los sistemas de entretenimiento que poseen señales de vídeo están dotados de pantallas LCD (pantalla de cristal líquido) ubicados en la parte posterior de los asientos o en un mecanismo plegable en los brazos de las mismas.

-Arquitectura y Mantenimiento

-Fallas Tipicas

-Analisis de correcion

segunda investigacion

SISTEMA DE ANUNCIOS A PASAJEROS (PA)

Principios de funcionamiento Arquitectura
Este sistema permite la comunicación entre la tripulación de vuelo y la cabina de pasajeros. De esta forma la tripulación hace anuncios a los pasajeros a través de un sistema de audio.
El sistema de PA provee entradas de audio al piloto, auxiliares de vuelo, anuncios Pre-Grabados y sistemas de entretenimiento (vídeo y música).

El PA consta de amplificadores, handset, unidades telefónicas, parlantes. Los amplificadores tienen unidades de control automático de ganancia para incrementar el volumen del anuncio a pasajeros siempre y cuando este trabajando los motores o el sistema de oxigeno, además estos amplificadores constan de un sistema de auto prueba.

La buena comunicación entre la tripulación de vuelo y los pasajeros es extremadamente importante durante el desarrollo del vuelo.

Existen cuatro niveles de prioridad asignada al sistema de anuncio a pasajeros. Los anuncios del piloto son los más importantes, a este le siguen los anuncios por los asistentes de vuelo. Los anuncios pregrabados hacen parte del tercer nivel, y le sigue la música de vuelo. También se produce un sonido cuando el piloto activa las señales de “Ajústese los cinturones” o “no fumar”. Los anuncios de emergencia pregrabados pueden ser activados por el piloto o por los asistentes de vuelo, estos mensajes son iniciados automáticamente en el caso que se presente una despresurización en la cabina.

En conclusión el sistema de PA consta de tres amplificadores, una unidad de cinta magnética (avisos Pre-Grabados), panel de control de auxiliar de vuelo, panel de control del piloto. Los cuales guardan su prioridad:

-Mensajes del piloto
-Mensajes de las auxiliares
-Mensajes grabado
SISTEMA DE INTERFONIA

La Interfonía es un sistema utilizado para establecer comunicación verbal con un usuario que esta en un punto determinado. La comunicación se realiza a través del protocolo que suministra el fabricante de la central y siempre que sea posible se realiza a través de TCP/IP. En el caso que se utilice el sistema de voz sobre IP, además de establecer comunicación verbal con el usuario, se pueden mandar mensajes pregrabados (MEGAFONÍA).

bibliografia,
http://www.kriptoningenieros.com/index_archivos/Page1076.htm

TRANSMISION DE RADIO FRECUENCIA AM Y FM

1. MODULACIÓN EN AM
Como se ve en la figura, la información de entrada varia la amplitud de la señal portadora. La frecuencia portadora es mantenida constante. Las señales transmitidas inducen un voltaje en la antena receptora, el receptor amplifica la señal y detecta las variaciones en amplitud en la señal, y reproduce la información transmitida en la salida del receptor. Note que cualquier señal de interferencia que varíe la amplitud de la portadora del receptor se convierte en una señal en la salida del receptor de AM. Es importante notar que en la transmisión de TV, las señales de video (imagen) son modulan en amplitud la portadora.

2. MODULACIÓN EN FM
En la siguiente figura se muestra la transmisión y recepción en FM. La entrada de la información varia la frecuencia de una portadora transmitida. La frecuencia de la portadora se mantiene constante. Las señales transmitidas inducen un voltaje en la antena receptora , el receptor amplifica la señal, manda las señales a través de un limitador y discriminador, y reproduce la información transmitida en la salida del receptor. Como se muestra el limitador/discriminador corta las portadoras arriba y abajo para eliminar las variaciones en amplitud. Las señales no deseadas causan una variación en la portadora del receptor en amplitud de la antena receptora. Estas no aparecerán en la salida del receptor ya que están no varían la frecuencia de la portadora recibida. Esto es porque la transmisión en FM es esencialmente libre de interferencia y ruido, con respecto a la portadora modulada en amplitud.

- OPERACION

Los receptores de FM tienen menor ruido que los receptores de AM. La razón es que existe mayor ruido e interferencia en la señal portadora modulada en amplitud, y los sistemas FM están diseñados para eliminar las señales no deseadas de la portadora en amplitud modulada.

bibliografia,
http://www.eveliux.com/mx/transmision-de-radio-am-y-fm.php


LINEAS DE TRANSMISION:
Las ondas planas uniformes, son ejemplos de propagación de ondas sin guías (libremente), en el sentido de que una vez que se han propagado en una dirección, dentro de un bloque infinito de material, continúan propagándose en la misma dirección. De acuerdo con lo anterior, las líneas de transmisión (al igual que las guías de onda) se utilizan para guiar la propagación de la energía de un punto a otro.
Así pues, una línea de transmisión se puede definir como un dispositivo para transmitir o guiar energía de un punto a otro. Usualmente se desea que la energía sea transportada con un máximo de eficiencia, haciendo las pérdidas por calor o por radiación lo más pequeñas posible.
Las líneas de transmisión pueden ser de muchas formas y tamaños. Es conveniente clasificarlas en base a las configuraciones de sus campo E y H, es decir, en base a los modos que pueden transmitir. De esta manera, las líneas de transmisión se pueden dividir en dos grupos principales:

1) Las que son capaces de transmitir el modo Transversal Electromagnético (TEM). Del cual se desprenden las O.P.U.
2) Las que son capaces de transmitir únicamente modos de orden más alto.

En un modo TEM ambos, el campo eléctrico y el campo magnético, están completamente en la dirección de propagación. No hay componente ni de E, ni de H en la dirección de transmisión.
Por ejemplo, si la dirección de transmisión es en Z, entonces las únicas posibilidades para la dirección de E y de H serían Ex y Hy ó Ey y Hx. La única diferencia con las O.P.U. es que en el modo TEM E y H no necesariamente son independientes de su posición en el plano formado por XY (el cual es transversal a Z). Mientras que en las O.P.U. E Y H sí deben ser independientes de su posición en estos planos (esto es la característica de uniformidad).
Los modos de más alto orden siempre tienen al menos una componente, de alguno de los campos en la dirección de transmisión.
Todas las líneas de dos conductores como el cable coaxial o el cable de dos hilos son ejemplos de líneas que transmiten el modo TEM o simplemente de líneas TEM; mientras que las guías de onda huecas, de un solo conductor, son ejemplos de líneas de modos más altos.

bibliografia,

ACOPLADORES DE ANTENA (TUNING)

Es un sistema de sincronzacion de la antena automatica intencionado fundamentalmente para el uso con la operación en el alto rango de frecuencia. El equipo tambien incluye para sincronizar semiautomaticamente y manualmente, haciendo que el sistema sea mas facil de adaptar para el uso con otro transmisor de radio. La caracteristicas del sincronizador manual es util cuando una falla ocurre en el circuito de sincronizacion automatico. La sincronizacion tambien puede ser hecho sin el uso de la potencia RF. Este metodo es util en las instalaciones donde el silencio de la radio sea mantenida excepto para un periodo de transmision breve.
El sincronizador de la antena iguala la impedancia de 15-,25-,28-, o 35- pies de antena flexible a 50- ohmios de linea de transmicion, en cualquier frecuencia de 2 a 30 MHZ, cuando el acoplador es usado con el AN/URT-23(V), controla la señal desde el acoplador de la antena asociado al sincroniza automaticamente la unidad de control, el acoplador iguala las redes en menos de 5 segundos.

bibliografia,
http://http://www.tpub.com/content/et/14092/css/14092_45.htm

ANTENAS

A. Clasificacion:
las antenas varian en forma y diseño dependiendo de la frecuencia para ser transmitida y para los propositos especificos deben servir. Las antenas que encontramos son:

· Comunicación, navegacion.
· Comunicación VHF.
· Equipos de medicion de distancia
· Radiofaro de orientacion
· Senda de alcance (glidescope)

B. Estructura:

profesor no c donde encontrarlo, digame donde puedo buscarlo ?????

C. Funcionalidad:
Es un tipo especial de circuito electrico diseñado para radiar y recibir energia electromagnetica. La estacion de transmicion radia señales en todas las direcciones, y algunas antenas especiales son diseñadas para que radien en una sola direccion y otras en todas las direcciones.

BIBLIOGRAFIA

AC 65-15A Airframe and Powerplant Mechanics Airframe Handbook

martes, 17 de febrero de 2009

CONCEPTOS DE COMUNICACIÓN

A. Elementos de Comunicación:

En los elementos de comunicación encontraremos:

El código: en este caso se refiere a la forma en que se codificará ese pensamiento, incluyendo la habilidad, la actitud, los conocimientos. Es más, el éxito total de cada persona se determina también por las habilidades de hablar, escribir, escuchar y razonar. Tenemos ideas preconcebidas sobre temas diversos y esas actitudes afectan nuestras comunicaciones. Se tiene que tomar en cuenta que no se puede comunicar lo que no se sabe y aunque el individuo (emisor) lo sepa, es posible que el receptor no lo entienda.

El mensaje: es el producto real de la fuente codificadora. Es toda la información que se transmite y si se logra una comunicación exitosa será también todo lo que reciba el receptor.

El canal: es el medio a través del cual viaja el mensaje. En una organización y en cualquier situación es muy importante seleccionar el medio más adecuado para transmitir la información y esto dependerá del tipo de información, de quienes deberán recibirlo, las condiciones que se requieren para el mejor entendimiento del mismo. Tradicionalmente siguen la red de autoridad de una organización los mensajes relacionados con el trabajo de los miembros de la misma; para esto lo más adecuado es un canal formal. Otras formas de mensajes como los sociales o personales, siguen canales informales en la organización.

El emisor: es cualquier individuo interno o externo de una organización, es la fuente de comunicación quien desea transmitir un pensamiento o idea a otros.

El receptor: es el objeto a quien se dirige en mensaje. Pero antes de que esto ocurra el mensaje debe ser descodificado proceso mismo que requiere de las habilidades, actitudes y conocimientos previos sobre el tema del receptor.

Y ahora el elemento que indica en el proceso si hubo éxito o no, nos referimos a la retroalimentación. En una organización se medirá si una información llegó adecuadamente si se recupera respuesta ante el mismo.


teoria de las ondas


La Teoría de las Ondas de Elliott fue descubierta a finales de los años 20 por Ralph Nelson Elliott. Descubrió que la bolsa no se comporta de manera caótica sino en ciclos repetitivos, como reflejo de las acciones y emociones de los humanos y debidas en gran parte a la psicología de masas a la que considera la culpable principal.
En parte se basó en la Teoría de Dow, que también usa las ondas para el estudio de la bolsa, pero Elliott descubrió la naturaleza fractral de la bolsa (repitiéndose las mismas pautas a mayor y menor escala), analizándola en mayor profundidad, y tras años de estudio, identificando patrones adecuados para hacer predicciones
A partir de los 70 ganó popularidad gracias a las predicciones de alzas y crash realizadas por Frost y Prechter ("Elliott Wave Principle...key to stock market profits, 1978").

2. Los patrones

El patrón básico: Tres dientes de sierra con el 3º más corto, para las tendencias principales (Onda 1,2,3,4,5) del tipo de los dibujos siguientes: o o
Dos dientes de sierra para las correcciones (onda A,B,C), del tipo:
Evidentemente las correcciones serán siempre de menor altura que las tendencias (ya sean la alza o a la baja)
Veamos un ejemplo de tendencias al alza y correcciones a la baja (pero iguelmente pueden ser tendencias a la baja y correcciones al alza):


A continuación veamos más tendencias básicas, que son pequeñas variaciones de las anteriores:
Y más correcciones básicas:


3. Channeling
Herramienta importante para proyectar objetivos a alcanzar en la próxima onda, se trata de trazar lineas paralelas o en ángulo que trazan el canal de la tendencia o corrección. Veamos unos


propagacion de las ondas


Se llama propagación al conjunto de fenómenos físicos que conducen a las ondas de radio con el mensaje del transmisor al receptor.
La propagación no es debida a un único fenómeno físico. Varios modos de propagación son posibles:
La propagación ionosférica
La propagación troposférica
La propagación por onda de suelo
Contenido


1 Reflexión ionosférica
1.1 Variaciones de densidad de la ionosfera
1.2 Capa D
1.3 Capa E
1.4 Capa F
1.5 Predicción de la propagación ionosférica por ordenador
1.6 Bandas diurnas y bandas nocturnas
1.7 Curiosidades
2 Dispersión troposférica
3 EME
4 Difracción
5 Literatura
6 Enlaces externos


Reflexión ionosférica

La ionosfera es la región de la alta atmósfera entre 60 y 400 km de altura. Como el propio nombre indica está compuesta de iones y de plasma ionosférico y es de forma esférica al ser una de las capas de la atmósfera.
Es importante para la propagación porque permite reflejar o refractar ondas radioeléctricas por debajo de una frecuencia crítica llamada comúnmente
MUF, frecuencia máxima utilizable.
La ionosfera está compuesta de tres capas
la capa D
la capa E
la capa F (durante la noche) que se divide en dos, las capas F1 y F2, durante el día.

Variaciones de densidad de la ionosfera
Las propiedades de propagación de la ionosfera son debidas a variaciones de densidad en el plasma iónico. Esas propiedades dependen del día del año, de la hora, del momento de ciclo solar de once años, de la estación, y de la latitud. Esas variaciones son irregulares, y no es posible calcularlas o medirlas con precisión.

Capa D
La capa D es la capa de la ionosfera más cercana a la Tierra. Se encuentra a unos 60 km de altura.
La ionización provocada por el viento solar aumenta la densidad de electrones en la capa D. Por esa razón, las ondas radioeléctricas son fuertemente absorbidas.
Durante la noche, la capa D no recibe viento solar, por lo que rápidamente desaparece.
Las explosiones solares, las manchas solares, las fluctuaciones en el campo magnético terrestre y las auroras polares, también afectan a la propagación ionosférica.
La capa D es sumamente absorbente para las frecuencias por debajo de unos 10 MHz, por lo tanto, las frecuencias afectadas son menos atenuadas cuando son atravesadas más cerca de la vertical.

Capa E
La capa E es una capa que refleja las ondas de radio. A veces se forma por ionización del aire por causas que no dependen de la radiación solar; algunos investigadores piensan que podría ser por fricción entre distintas capas de la atmósfera.
La propagación esporádica E es una propagación.


Capa F
Durante el día, la propagación de tipo "Esporádica-E" se da en la región E de la ionosfera, y a ciertas horas del ciclo solar la región F1 se junta con la F2. Por la noche las regiones D, E y F1 se quedan sin electrones libres, siendo entonces la región F2 la única disponible para las comunicaciones; de todas formas no es raro que también pueda darse por la noche la propagación "esporádica-E". Todas las regiones excepto la D reflejan ondas de HF. La Región D pese a no reflejarlas también es importante ya que ésta se encarga de absorberlas o atenuarlas. La región F2 es la más importante para la propagación de HF ya que: o Está presente las 24 h. del día. o Su altitud permite comunicaciones más lejanas. o Normalmente refleja las frecuencias más altas de HF. El periodo de vida de los electrones es mayor en la región F2, y esa es la razón por la cual esta capa refleja ondas por la noche. Los periodos de vida de los electrones en las regiones E, F1 y F2 son de 20 segundos, 1 minuto y 20 minutos respectivamente.

Predicción de la propagación ionosférica por ordenador
Las predicciones de la propagación se hacen por ordenador en distintos sitios de Internet, 18 minutos después de cada hora. Las perturbaciones inonosféricas y magnetosféricas ocurren cada 27 días, que es el tiempo de rotación del sol sobre sí mismo.
El índice A es una medidad de la actividad solar. Se transmite en una escala de 0 a 400.
El índice K es una medida del campo geomagnético en una escala de 0 a 9. La
MUF disminuye (o sea, la propagación es menos favorable) cuando la actividad del campo geomagnético aumenta.

Bandas diurnas y bandas nocturnas
La propagación ionosférica divide las bandas
HF en dos tipos:
Llamamos bandas nocturnas a las bandas que sufren una fuerte atenuación por absorción en la capa D. Al caer la noche, la capa D desaparece y la propagación en las bandas nocturnas aumenta considerablemente. Las bandas nocturnas están aproximadamente por debajo de los 30 metros (10 MHz).
Llamamos bandas diurnas a aquellas cuya propagación nocturna es nula. Estas bandas pierden la propagación pocas horas después de la caída del sol. Las bandas diurnas están situadas por encima de los 30 metros (10 MHz).
Las bandas alrededor de los 10 MHz tienen un comportamiento intermedio
Curiosidades
Por razones históricas, la primera capa conocida fue la capa E.
No existen las capas A, B o C.
Dispersión troposférica
A veces la
troposfera puede producir refracción de las ondas de radio. Este fenómeno ocurre cuando sucede una inversión (las capas más altas están más frías y por lo tanto son más densas que las capas bajas). Es particularmente apreciable por la mañana, y en VHF.
EME
Del inglés Earth-Moon-Earth, es un modo de propagación en el cual la reflexión de la onda de radio se hace en la Luna.
Como la distancia entre la Tierra y la Luna es de un segundo-luz (300 000 km), la distancia total recorrida entre el emisor y el receptor es de 600 000 km.
En consecuencia, la onda de radio en el modo de propagación de rebote lunar sufre una gran atenuación y hasta fechas recientes era necesario tener transmisores muy potentes y antenas muy grandes y directivas. En la actualidad, gracias a los
modos digitales proporcionados por el programa WSJT es posible realizar comunicaciones por rebote Lunar con instalaciones muy modestas, como por ejemplo una sola antena Yagi y unos 50w de potencia.





atmofera


La atmósfera terrestre es la capa gaseosa que rodea a la Tierra. Está compuesta por oxígeno (20,946%) y nitrógeno (78,084%), con pequeñas cantidades de argón (0,93%), dióxido de carbono (variable, pero alrededor de 0,033% ó 330 ppm), vapor de agua (aprox. 1%), neón (18,2 ppm), helio (5,24 ppm), kriptón (1,14 ppm), hidrógeno (5 ppm) y ozono (11,6 ppm).
Protege la vida de la
Tierra absorbiendo en la capa de ozono parte de la radiación solar ultravioleta, reduciendo las diferencias de temperatura entre el día y la noche, y actuando como escudo protector contra los meteoritos. El 75% de la atmósfera se encuentra en los primeros 11 km de altura desde la superficie planetaria


Diagrama del contenido de vapor en la atmósfera terrestre.
La atmósfera terrestre es la capa gaseosa que rodea a la
Tierra. Está compuesta por oxígeno (20,946%) y nitrógeno (78,084%), con pequeñas cantidades de argón (0,93%), dióxido de carbono (variable, pero alrededor de 0,033% ó 330 ppm), vapor de agua (aprox. 1%), neón (18,2 ppm), helio (5,24 ppm), kriptón (1,14 ppm), hidrógeno (5 ppm) y ozono (11,6 ppm).
Protege la vida de la
Tierra absorbiendo en la capa de ozono parte de la radiación solar ultravioleta, reduciendo las diferencias de temperatura entre el día y la noche, y actuando como escudo protector contra los meteoritos. El 75% de la atmósfera se encuentra en los primeros 11 km de altura desde la superficie planetaria.
Contenido[
ocultar]
1 Variación de la presión con la altura
1.1 Escala de altura
2 Capas de la atmósfera terrestre y la temperatura
3 Regiones atmosféricas
4 Fricción atmosférica
5 Velocidad decreciente en caída libre
6 Ciclos biogeoquímicos
7 Evolución
7.1 Origen
7.2 Etapa prebiótica
7.3 Etapa microbiológica
7.4 Etapa biológica
8 Enlaces externos

Variación de la presión con la altura
Artículo principal:
Atmósfera
La variación con la altura de la
presión atmosférica con el conocimiento que se tiene del magnetismo o de la densidad atmosférica es lo que se conoce como Ley barométrica.
La diferencia de presión entre dos capas separadas por un Δh es:

pues se supone la densidad constante.
La ley de la densidad suponiendo el aire como un gas ideal

aplicada a la superficie de la Tierra resulta una densidad del aire .
Pretendemos subir una montaña no excesivamente alta (para que la densidad sea constante) y queremos saber como disminuirá la presión a medida que ascendemos
Como la densidad del mercurio es: es 11.100 veces mayor que la densidad del aire resulta que la presión disminuye 1 mm de Hg cuando nos elevamos 11100 mm es decir 11,1
m. Ahora bien como 4 hPa son 3 mm de Hg la presión disminuye 4 hPa cada 33,3 m es decir 1 hPa cada 8 m de ascenso.
En una atmósfera isoterma la presión varía con la altura siguiendo la ley:

donde M es la
masa molecular, g la aceleración de la gravedad, h-h0 es la diferencia de alturas entre los niveles con presiones P y P0 y T es la Temperatura absoluta media entre los dos niveles, y R la constante de los gases perfectos. El hecho de que la temperatura varíe sí limita la validez de la fórmula. Por el contrario, la variación de la aceleración de la gravedad es tan suave que no afecta.

Escala de altura
La escala de altura es la altura a la que hay que elevarse en una atmósfera para que la
presión atmosférica disminuya en un factor e=2,718182. Es decir la disminución de presión es Para calcularla basta con poner en la ley barométrica resulta:

Para la atmósfera de la Tierra la escala de alturas H es de 8,42
km.
En función de la escala de alturas H la presión puede expresarse:

y análogamente para la densidad:


Capas de la atmósfera terrestre y la temperatura

Capas de la atmósfera
La
temperatura de la atmósfera terrestre varía con la altitud. La relación entre la altitud y la temperatura es distinta dependiendo de la capa atmosférica considerada:
Tropósfera: 0 - 9/18 km, la temperatura disminuye con la altitud.
Estratosfera: 9/18 - 50 km, la temperatura permanece constante para después aumentar con la altitud.
Mesosfera: 50 - 80/90 km, la temperatura disminuye con la altitud.
Termosfera o Ionosfera: 80/90 - 600/800 km, la temperatura aumenta con la altitud.
Exosfera: 600/800 - 2.000/10.000 km
Las divisiones entre una capa y otra se denominan respectivamente
tropopausa, estratopausa, mesopausa y termopausa.

Regiones atmosféricas
Ozonosfera: región de la atmósfera donde se concentra la mayor parte del ozono. Se encuentra en la baja estratosfera, entre los 15 y 32 km, aproximadamente. Esta capa nos proteje de la radiación ultravioleta del Sol.
Ionosfera: región ionizada por el bombardeo producido por la radiación solar. Se corresponde aproximadamente con toda la termosfera.
Magnetosfera: Región exterior a la Tierra donde el campo magnético, generado por el núcleo terrestre, actúa como protector de los vientos solares.
Capas de airglow: Son capas situadas cerca de la mesopausa, que se caracterizan por la luminiscencia (incluso nocturna) causada por la reestructuración de átomos en forma de moléculas que habían sido ionizadas por la luz solar durante el día, o por rayos cósmicos. Las principales capas son la del OH, a unos 85 km, y la de O2, situada a unos 95 km de altura, ambas con un grosor aproximado de unos 10 km.

Fricción atmosférica
La atmósfera es un escudo protector contra los impactos de enorme energía que provocarían aún pequeños objetos espaciales al colisionar a altísima velocidad la superficie del planeta.
Sin atmósfera, la velocidad de colisión de estos objetos sería la suma de su propia velocidad inercial espacial (medida desde nuestro planeta) más la aceleración provocada por la gravitación terrestre.
Una partícula del tamaño del punto de esta "i", incidiendo a más de 40.000 km/h (11 km/
s), sería capaz de perforar el techo de un automóvil si no tuviésemos atmósfera. Al tener la energía cinética se transforma en luz y desde la superficie vemos un meteoro.
La fricción es la manifestación macroscópica de una transferencia de energía cinética, o su transformación en otro tipo de energía, por la que un cuerpo "pierde" movimiento cediéndoselo a otro ya sea transfiriéndole parte de su propio movimiento o transformándose en movimientos moleculares (calor, vibración sonora, etc.)


ANTENAS
Una antena es un dispositivo formado por un conjunto de conductores que, unido a un generador, permite la emisión de ondas de radio frecuencia, o que, conectado a una impedancia, sirve para captar las ondas emitidas por una fuente lejana para este fin existen diferentes tipos:




Antena Colectiva: Antena receptora que, mediante la conveniente amplificación y el uso de distribuidores, permite su utilización por diversos usuarios.


Antena de Cuadro: Antena de escasa sensibilidad, formada por una bobina de una o varias espiras arrolladas en un cuadro, cuyo funcionamiento bidireccional la hace útil en radiogoniometría.


Antena de Reflector o Parabólica: Antena provista de un reflector metálico, de forma parabólica, esférica o de bocina, que limita las radiaciones a un cierto espacio, concentrando la potencia de las ondas; se utiliza especialmente para la transmisión y recepción vía satélite.
Antena Lineal: La que está constituida por un conductor rectilíneo, generalmente en posición vertical.



Antena Multibanda: La que permite la recepción de ondas cortas en una amplitud de banda que abarca muy diversas frecuencias.
Dipolo de Media Onda: El dipolo de media onda lineal o dipolo simple es una de las antenas más ampliamente utilizadas en frecuencias arriba de 2MHz. En frecuencias abajo de 2 MHz, la longitud física de una antena de media longitud de onda es prohibitiva. Al dipolo de media onda se le refiere por lo general como antena de Hertz.
Una antena de Hertz es una antena resonante. O Sea, es un múltiplo de un cuarto de longitud de onda de largo y de circuito abierto en el extremo más lejano. Las ondas estacionarias de voltaje y de corriente existen a lo largo de una antena resonante.















La figura anterior podemos observar las distribuciones de corriente y voltaje ideales a lo largo de un dipolo de media onda. Cada polo de la antena se ve como una sección abierta de un cuarto de longitud de onda de una linea de transmisión. Por lo tanto en los extremos hay un máximo voltaje y un mínimo de corriente y un mínimo de voltaje y un máximo de corriente en el centro. En consecuencia, suponiendo que el punto de alimentación esta en el centro de la antena, la impedancia de entrada es Eminimo / Imaximo y un valor mínimo. La impedancia en los extremos de la antena de Emaximo / Iminimo y un valor máximo.
La figura siguiente muestra la curva de impedancia para un dipolo de media onda alimentado en el centro.











La impedancia varia de un valor máximo en los extremos de aproximadamente 2500 W a un valor mínimo en el punto de alimentación de aproximadamente 73 W (de los cuales entre 68 y 70 W es la impedancia de radiación).
El patrón de radiación de espacio libre para un dipolo de media onda depende de la localización horizontal o vertical de la antena con relación a la superficie de la tierra.
La figura siguiente muestra el patrón de radiación vertical para un dipolo de media onda montado verticalmente. Observese que los dos lóbulos principales que irradian en direcciones opuestas están en ángulo derecho a la antena, los lóbulos no son círculos, se obtienen solo en el caso ideal donde la corriente es constante a todo lo largo de la antena, y esto es inalcanzable en una antena real.























Antena Yagi: Antena constituida por varios elementos paralelos y coplanarios, directores, activos y reflectores, utilizada ampliamente en la recepción de señales televisivas. Los elementos directores dirigen el campo eléctrico, los activos radian el campo y los reflectores lo reflejan. (figura siguiente)
Los elementos no activados se denominan parásitos, la antena yagi puede tener varios elementos activos y varios parásitos. Su ganancia esta dada por:
G = 10 log n
donde n es el número de elementos por considerar.



























Para la antena yagi de tres elementos la distancia entre el reflector y el activo es de 0.15l , y entre el activo y el director es de 0.11l . Estas distancias de separación entre los elementos son las que proporcionan la óptima ganancia, ya que de otra manera los campos de los elementos interferirían destructivamente entre sí, bajando la ganancia.
Como se puede observar, este diseño de antena yagi resulta ser de ancho de banda angosto, ya que el elemento dipolar está cortado a una sola frecuencia que generalmente se selecciona en la mitad del ancho de banda de los canales bajos de TV; es decir, del canal 2 al canal 6 (de 50MHz a 86 MHz). Esto resulta ser una desventaja ya que no es posible cubrir varios canales de TV con una misma ganancia seleccionada. Por tal razón se utiliza la denominada antena yagi de banda ancha, la cual puede cubrir varios canales a la vez aunque sacrificando la ganancia.
En la figura siguiente se muestran los parámetros de diseño x y y, creando la relación x + y = l /4, la ganancia se acentúa alrededor de un solo canal, como se muestra en la figura.






Para considerar una antena yagi de banda ancha es necesario, entonces, hacer ajustes en las distancia entre los elementos para obtener, junto con el ancho de banda deseado, la ganancia óptima. Se recuerda que para un arreglo de antenas en las cuales todos los elementos van alimentados se obtiene mejor ganancia para el denominado "en linea". Como la antena yagi utiliza elementos alimentados y parasitos, es común aumentar el numero de elementos alimentados a 2 o 3; estos dipolos se cortan a la frecuencia media del ancho de banda; generalmente para los canales bajos de televisión da muy buen resultado. En la figura siguiente se proporciona las dimensiones para óptima ganancia de una antena yagi de tres elementos






















Antenas Prácticas
La elección de la antena a instalar en una situación determinada depende de un gran número de factores. Desde un simple alambre extendido entre las azoteas dos edificios vecinos hasta complejas estructuras sobre una torre giratoria, las configuraciones posibles son muy numerosas, y el aficionado debe escoger la que más se acomode a sus posibilidades y necesidades. En los edificios urbanos, donde frecuentemente el espacio es restringido, el trabajo en HF puede iniciarse con una antena vertical con algunos «radiales» como plano de tierra, que puede proporcionar buenos contactos, aunque las antenas de este tipo son susceptibles de captar más ruido eléctrico ambiental que los dipolos horizontales. En VHF y UHF, ha de ser generalmente factible hallar en un edificio un punto donde instalar una antena vertical eficaz o incluso una pequeña directiva con un rotor al extremo de un mástil.
La antena dipolo de 1/2 onda. Desde el punto de vista eléctrico y considerando la fiabilidad de predicción de su comportamiento, la facilidad en procurarse los materiales necesarios y su economía, la antena dipolo de media onda alimentada por el centro es la opción que debería considerar en primer lugar el radioaficionado aprendiz.
Una antena horizontal de media onda, despejada y elevada por lo menos un 1/4 de onda sobre cualquier obstáculo, proporciona buena cobertura para distancias cortas y medias y es capaz de dar alguna agradable sorpresa en distancias largas. La longitud total de una antena dipolo de hilo es algo menor que la correspondiente a la media onda en el aire debido al efecto puntas de los conductores (capacidad del hilo más los aisladores extremos). Así pues, una antena para la frecuencia de 21,175 MHz (centro del segmento de fonía para EC) debería tener unos 6,85 m. Un dipolo del mismo tipo para el segmento de CW de la banda de 40 metros (7,025 MHz) mide 20,64 m. Las medidas anteriores son válidas suponiendo que el diámetro del conductor empleado es muy reducido comparado con la longitud de la onda a radiar. Si el conductor de la antena es grueso se debe aplicar un factor de reducción. El diagrama de radiación vertical de un dipolo depende grandemente de su distancia al suelo y de las características de éste, lo cual explica en parte las enormes diferencias de comportamiento de antenas aparentemente iguales, situadas en lugares distintos.


La Antena Vertical de 1/4 de Onda
El más conocido dipolo asimétrico es la antena de cuarto de onda con plano de tierra artificial, conocida como ground plane. El plano de tierra se simula mediante varios «radiales» de un cuarto de onda extendidos por debajo del elemento radiante vertical y conectados a la malla del cable de alimentación. La práctica demuestra que en HF 30 o 40 radiales de un 1/4 de onda y separados del suelo proporcionan excelentes resultados. En VHF y UHF, donde por lo general las antenas verticales se instalan a cierta altura sobre el suelo, el número de radiales puede ser mucho más reducido. Con los radiales en ángulo recto respecto al elemento radiante, la impedancia de la antena es de 36 ohmios. A medida que los radiales forman un ángulo más obtuso respecto al elemento radiante, la impedancia del sistema aumenta. La antena vertical mínima debe tener un 1/4 de onda eléctrico, lo que no significa que tenga la longitud física de una cuarta parte de la longitud de la onda a transmitir. La longitud física de una antena autorresonante para las bandas de onda más larga -y especialmente en la banda de 160 metros-, puede ocasionar problemas mecánicos para su sustentación de modo que, en general, se la hace menor a la teórica de 1/4 de onda y aún funciona bastante bien. Las antenas verticales cortas se «alargan» artificialmente bien añadiéndoles una inductancia en la base o una capacidad en el extremo superior.


El Dipolo en V Invertida
Cuando el espacio disponible no permite extender el dipolo horizontalmente en toda su longitud, se puede adoptar la configuración de las antenas dipolo en V invertida, que son una buena solución y que presenta incluso algunas ventajas frente al dipolo horizontal. Esta antena se instala utilizando un solo mástil, que la sustenta por su centro o suspendida de una driza. Con un ángulo de 90º entre las ramas en el vértice, esta antena presenta un diagrama de radiación prácticamente omnidireccional, ángulos de salida bajos y una impedancia próxima a los 50 ohmios, que la hace apta para ser alimentada con cable coaxial.
Antenas para Espacios Reducidos
Para las bandas de 80 y 160 metros, en muchas ocasiones no es materialmente posible extender un dipolo de media onda. Es preciso entonces, tratar de acomodar las ramas de la antena al espacio disponible, doblándolas en el plano horizontal o decidirse por una antena vertical. Combinando varios procedimientos es posible construir antenas cuya longitud física sea la mitad o aún menos de la que teóricamente le correspondería y aún así ser muy eficientes. No es infrecuente, por ejemplo, ver antenas dipolo rígidas para la banda de 40 metros cuya longitud total no supera los 10 m. Con todo, no hay que olvidar que cualquier reducción de tamaño de una antena comporta inevitablemente una reducción del ancho de banda útil, así como un descenso del rendimiento total debido, entre otras cosas, a las pérdidas acumuladas en los elementos añadidos.


Antenas Cortas con Inductancias
Uno de los procedimientos usuales para «alargar» eléctricamente las antenas comporta el uso de inductancias en sus ramas. El cálculo del valor y posición de esas inductancias es bastante complicado para hacerlo manualmente por lo que deben usarse programas de ordenador que lo resuelven con buena exactitud. No es válida la simplificación de acortar la antena simplemente arrollando el exceso de hilo sobre un soporte cualquiera formando una bobina; la inductancia necesaria de esa bobina depende de la posición que ocupe sobre el dipolo y de la longitud total de éste, así que sería sólo casualidad acertar con todas las variables.
Antenas Cortas con Cargas Lineales
Otro método de reducir la longitud física de las antenas, manteniendo la resonancia y ofreciendo una resistencia de radiación conveniente y bajas pérdidas, es el uso de las llamadas cargas lineales, consistentes en plegar sobre sí mismo parte del conductor de la antena; el cálculo de las dimensiones de esa configuración es muy complejo y debe realizarse con la ayuda de un programa de ordenador.
Antenas Cortas con Carga Capacitiva
Un tercer procedimiento para «alargar» artificialmente una antena es añadir capacidad al extremo de la misma. Esta capacidad está compuesta por lo general por una red de conductores (cruz, polígono, etc.) conectada al extremo del conductor que se quiere alargar eléctricamente. Un medio para añadir carga capacitiva a un mástil radiante vertical es utilizar una sección de los vientos superiores, que se conectan eléctricamente al vértice del mástil, formando las aristas de un polígono cónico. Si la reducción de longitud es considerable, una antena de ese tipo presenta una baja resistencia de radiación, que complica asimismo el problema de las pérdidas del sistema de tierra.


Antenas Dipolos Multibanda
Un dipolo resuena, además de en su frecuencia natural, a frecuencias múltiplos de aquella; a ciertas frecuencias, la impedancia en el punto de alimentación hace que la ROE resultante sea muy elevada. Es posible, sin embargo, hacer resonar una antena en varias bandas manteniendo su impedancia en valores próximos a la del cable coaxial haciendo uso de «trampas» de onda, que dividen eléctricamente la antena en varios tramos, cada uno de los cuales, añadido al anterior, hace resonar a la antena en una banda determinada. Las trampas de onda actuan prácticamente como un interruptor a su frecuencia, aislando las secciones subsiguientes de la antena. A una frecuencia inferior, la tranpa presenta reactancia inductiva, alargando así eléctricamente la rama. Es posible combinar los distintos valores de forma que la antena resuene en dos o más bandas con una impedancia adecuada para ser alimentada con cable coaxial. Una popular antena de ese tipo es el dipolo para dos bandas (típicamente para 80 y 40 metros) que desarrolló W3DZZ hace ya muchos años. En el número 180 (diciembre 1998) de CQ Radio Amateur y en su página 24 se incluye un excelente artículo de G. Murphy, VE3ERP, que ofrece varias antenas multibandas con trampas LC, ya resueltas.
Otra popular antena multibanda es la desarrollada por John Varney, G5RV, de la cual se han desarrollado varias versiones, cortas y largas, que no es difícil de construir y debería ser ensayada por todo radioaficionado.


Antenas para VHF y UHF
Dada la menor longitud de onda de las señales de VHF y UHF, las dimensiones de las antenas básicas (dipolo, vertical con plano de tierra, etc.) son proporcionalmente menores y por ello mismo en esas bandas son posibles formaciones de mayor ganancia, con múltiples elementos, que resultarían inviables en las bandas decamétricas.
Antenas Verticales para V-UHF
Una sencilla antena vertical de 1/4 de onda con plano de tierra artificial puede proporcionar buenos resultados en un entorno urbano. Inclinando los radiales hacia abajo se logra rebajar el ángulo de radiación y elevar la impedancia hasta los 50 ohmios convenientes para alimentarla con cable coaxial. Combinando varias antenas verticales con sus elementos «en línea» se obtiene la antena denominada colineal, con la que se logran mayores prestaciones al concentrar la energía en un menor ángulo vertical, de forma que no se desperdicia energía hacia lo alto. Comercialmente se ofrecen antenas de este tipo que resultan prácticas y convenientes de instalar, tanto en situaciones fijas como sobre un vehículo. La comunicación en VHF o UHF a través de repetidores (analógicos o digitales) se efectúa exclusivamente en FM y utilizando polarización vertical, por lo que las antenas verticales omnidireccionales ofrecen una excelente solución para repetidores relativamente cercanos.
Antenas Direccionales para V-UHF
Cuando se desea incrementar el alcance de la estación en VHF o UHF es necesario optar por una antena direccional, fija o acoplada a un rotor. Dadas las dimensiones relativamente reducidas de estas antenas, incluso con múltiples elementos, es factible mejorar sustancialmente el alcance de un equipo sin necesidad



blibliografia: http://www.todoantenas/

LINEAS DE TRASMICNION


las líneas de transmisión (al igual que las guías de onda) se utilizan para guiar la propagación de la energía de un punto a otro.
Así pues, una línea de transmisión se puede definir como un dispositivo para transmitir o guiar energía de un punto a otro. Usualmente se desea que la energía sea transportada con un máximo de
eficiencia, haciendo las pérdidas por calor o por radiación lo más pequeñas posible.
Las líneas de transmisión pueden ser de muchas formas y tamaños. Es conveniente clasificarlas en base a las configuraciones de sus campo E y H, es decir, en base a los modos que pueden transmitir. De esta manera, las líneas de transmisión se pueden dividir en dos
grupos principales:
1) Las que son capaces de transmitir el modo Transversal Electromagnético (TEM). Del cual se desprenden las O.P.U.
2) Las que son capaces de transmitir únicamente modos de orden más alto.
En un modo TEM ambos, el
campo eléctrico y el campo magnético, están completamente en la dirección de propagación. No hay componente ni de E, ni de H en la dirección de transmisión. Por ejemplo, si la dirección de transmisión es en Z, entonces las únicas posibilidades para la dirección de E y de H serían Ex y Hy ó Ey y Hx. La única diferencia con las O.P.U. es que en el modo TEM E y H no necesariamente son independientes de su posición en el plano formado por XY (el cual es transversal a Z). Mientras que en las O.P.U. E Y H sí deben ser independientes de su posición en estos planos (esto es la característica de uniformidad).
Los modos de más alto orden siempre tienen al menos una componente, de alguno de los campos en la dirección de transmisión.
Todas las líneas de dos conductores como el
cable coaxial o el cable de dos hilos son ejemplos de líneas que transmiten el modo TEM o simplemente de líneas TEM; mientras que las guías de onda huecas, de un solo conductor, son ejemplos de líneas de modos más altos.
En resumen:
1) Línea modo TEM.- E y H son totalmente transversales a la dirección de transmisión. Ejemplos: todas las líneas de dos conductores.
2) Línea modo de más alto orden.- E ó H ó ambos tienen componentes en la dirección de transmisión. Ejemplos de modos de más alto orden son el modo TM, el modo TE. Ejemplos de este tipo de líneas de transmisión son las guías de onda huecas de un solo conductor o las líneas trifásicas.
En el ámbito electrónico el término "línea" o "línea de transmisión" usualmente se utiliza únicamente para hacer referencia a los dispositivos que pueden transmitir modo TEM, mientras que el término "guía" o "guía de onda" se utiliza para hacer referencia a los dispositivos que pueden transmitir modos de más alto orden.
A continuación se
muestra el diagrama (figura 1.1) utilizado para representar una línea de transmisión y en seguida se mostrarán algunas analogías útiles entre las O.P.U. y las líneas de transmisión:

















www.monografias.com